求逆矩阵(用初等变换法)

发布时间:2019-09-26 05:25

  用初等行变换求逆矩阵的方法经常用到,就是就是对矩阵(A,E)进行初等行变换,使其变成(E,B),则B就是A的逆矩阵A(–1)。求解的原理是这样的:对矩阵A进行一次初等行变换相当于对矩阵A左乘一个初等矩阵Pi,那么对A进行一系列的行变换得到单位矩阵E,相当于左乘了一系列的初等矩阵P1、P2、...、Pi后得到E。把这些可逆的初等矩阵乘在一起,就是P=P1*P2...*Pi,且PA=E,那么P就是A的逆矩阵。所以当(A E)中左边的A经过初等行变换得到E时,右边的单位矩阵E也就经过相应的行变换,相当于左乘矩阵PE=P=A(–1)。,本题的求解过程如下图所示: